
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Learning for Accelerated Traffic Engineering
with Differentiable Network Modeling

Wenlong Ding, Student Member, IEEE, Libin Liu, Member, IEEE,
Li Chen, Member, IEEE, Hong Xu, Senior Member, IEEE

Abstract—Traffic engineering (TE) in the wide-area networks
(WAN) is crucial for optimizing network performance by dis-
tributing traffic across various paths. Traditional methods use
optimization like linear programs (LP) to solve TE, resulting
in long decision-making time especially in larger topologies
due to the iterative nature of optimization algorithms. Deep
neural networks (DNNs) have been recently applied to TE to
expedite decision-making through model inference. However,
existing works rely on discrete event-based network simulators
or non-differentiable algorithms to compute TE metrics from
decisions by interacting with the network environment, breaking
the gradient chains from decisions to metrics. Thus, TE metrics
are treated as scalar values without gradients, limiting the
learning paradigm for TE to reinforcement learning (RL) only.

This paper demonstrates that calculating TE metrics can be
fully differentiable, enabling direct gradient-based DNN updates
for better TE decision-making, surpassing RL’s reliance on
approximated value functions. We propose dNE, a lightweight
network simulator that uses differentiable matrix operations to
evaluate TE decisions and compute user-defined metrics, enabling
advanced DNN training paradigms like goal-driven optimization
supervised by TE metric gradients. With dNE, experiments on
four DNN-based TE algorithms show that DNNs trained with
metric gradients reduce performance loss by over 10x compared
to RL, speed up LP solvers by 13000x, and achieve 1000x faster
metric computation than traditional event-based simulators.

Index Terms—Traffic engineering, deep learning algorithms,
differentiable network modeling.

I. INTRODUCTION

CLoud providers use wide-area networks (WANs) to in-
terconnect global data centers and deliver planet-scale

applications [25–27]. These WANs are privately owned by cer-
tain production companies and centrally controlled following
the software-defined networking paradigm referred to as SD-
WAN. SDWAN simplifies network management by abstracting
complex underlying network infrastructure, which provides
high-level network information like traffic demand between
source-destination pairs (i.e. flows) and enables centralized
control operations such as path assignment and demand-level
flow management, instead of traditional configurations that
focus on packet-level queuing and forwarding [25–27, 29].
Traffic engineering (TE) is a well-studied topic in SDWAN
that aims to optimize a global performance objective such as
minimizing the maximum link utilization by allocating traffic
demands of flows to their candidate paths with constraints such
as link capacity and demand satisfaction [25, 26, 28, 29, 49].

Wenlong Ding and Hong Xu are with the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Hong Kong SAR, China.
Libin Liu and Li Chen are with the Zhongguancun Laboratory, China.

Modern TE systems need frequent decision updates of traffic
allocation (usually every 5 minutes [29]) to adapt to traffic
dynamics, and also require fast speed of each update based on
real-time traffic to minimize the use of outdated decisions that
may result in performance degradation [11, 48]. Traditional
TE uses traffic demands and path information obtained from
centralized controller in SDWAN to formulate linear programs
(LP) to optimize TE objectives [25, 26]. However, both ex-
isting works [11, 48] and our empirical evidence in §II-A
indicate that runtime for solving LP is non-negligible, and it
takes several seconds for a topology with dozens of nodes,
which contradicts fast decision-making requirement. Also,
when scaling to larger topologies with hundreds or thousands
of nodes, its runtime can stretch to several hours, making it
further unacceptable for TE systems. Our goal is to accelerate
TE decision-making while maintaining good performance on
TE objectives similar to conventional LP.

Inspired by the success of reinforcement learning (RL) with
deep neural networks (DNNs) in complex online decision-
making tasks [40], deep RL (DRL) algorithms have been
introduced for TE [21, 42, 44, 49]. Through model inference of
well-trained RL agents, they can provide TE decisions timely.
Stampa et al. [42] and Xu et al. [49] both adopt the model-
free actor-critic based DRL algorithms to solve TE in SDWAN,
determining routing paths and traffic demand allocated to these
paths. These works rely on simulated network environments,
such as OMNet++ [45] and ns3 [24] to obtain RL rewards
related to TE objectives for given TE decisions. Recent work
Teal [48] integrates GNN with RL agents for fine-grained
flow allocation and relies on non-differentiable algorithms and
formulations to compute TE metrics as RL rewards.

However, discrete event-based simulators or algorithms have
notably slow speeds to simulate the networks and evaluate
TE decisions, which aggravates the model training time for
DRL-based TE. Evaluation in §VI-D shows that training DRL-
based TE takes over 3 days for only 100 epochs with ns3 [24]
on a 73-node topology. Recent studies propose DNN-based
network simulators [39, 50, 52] to accelerate it. Training these
DNNs, however, still needs discrete event-based simulators
or algorithms to generate enough training data for different
settings and topologies [50, 52], which is also time-consuming.

More importantly, discrete event-based simulators or al-
gorithms are inherently non-differentiable due to their focus
on the packet level or finer-grained flows, which exhibits
irregular behaviors and cannot be fully modeled mathemat-
ically [24, 45, 48]. Thus, evaluated TE metrics are obtained
as scalar values rather than differentiable functions derived

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

from TE decisions. This prevents using promising training
paradigms that leverage direct gradients from TE metric func-
tions to guide model updates for improved TE decisions. Con-
sequently, DNN-based TE methods are limited to DRL, which
only requires scalar metrics as RL rewards without gradient
computation. Essentially, DRL agents strive to approximate
non-linear value functions with random sampling for model
update, which introduces inherent instability and divergence
during training [14, 35], leading to longer training time and
less competitive results for TE. Large DRL models also require
significant tuning efforts to improve model robustness [31].

Therefore we ask the inevitable question for learning-based
TE: Why do we have to stick with DRL and discrete event-
based simulators or algorithms? DRL approaches with these
traditional simulators or algorithms tend to conduct TE at
packet or finer-grained flow level and share the same underly-
ing assumption that computation of TE metrics from decisions
in networks cannot be explicitly and differentially modeled.
While it is valid in some fine-grained traffic scheduling sys-
tems [16, 34], which focus on situations that are stochastic
(e.g., low-level flows within datacenter networks [16]) or
uncontrollable (e.g., video streaming over Internet [34]), it is
unnecessary to focus on low-level behaviors in the context of
SDWAN, where most modern TE systems are deployed [25–
27]. The logical centralized controller [25, 25, 26] in SDWAN
clearly provides high-level information about network, such as
demand values of traffic flows, link capacities, and available
paths between nodes. Additionally, the controller can automat-
ically distribute TE decisions at demand level, i.e., allocating
traffic demand values to each candidate path, rather than
addressing irregular behaviors of packets, which are already
managed by controller’s internal components at backend. This
indicates that SDWAN TE process has the potential to be fully-
differentiable modeled with careful designs, allowing us to
explore various training paradigms beyond DRL.

We introduce dNE, a fully-differentiable network simulator
that computes TE metrics from decisions. dNE takes a set of
matrices as input that describe network environments obtained
from the SDWAN controller, such as traffic demands, routing
paths, and link capacities, as well as TE decisions provided by
DNN models. It then computes resulting network states and
user-defined TE metrics, such as maximum link utilization,
using (differentiable) matrix operations. dNE’s primary goal
is to facilitate exploration of various DNNs and training
paradigms for potential performance gains while accelerating
TE decision-making. Additionally, dNE with linear algebra is
clearly much faster than discrete event-based simulation.

We highlight our contributions as follows.
• We design dNE, a lightweight and fully differentiable

network simulator that enables explorations of diverse
DNNs and training paradigms for learning-based TE in
SDWAN. dNE uses differentiable matrix operations to
model the network and evaluate TE decisions, allowing
direct gradients of TE metric functions to guide DNN
training, overcoming the reliance on DRL training only.

• We prototype dNE1 using PyTorch’s automatic differ-

1https://github.com/NetX-lab/dNE.

10 15 25 35 50 70 100 150 250 500 1000 2000
Nodes

10−1

101

103

105

LP
 ru

nn
tim

e
(s
ec

on
ds

)

0.02
0.08

0.3
0.84

2.42
6.8

20.42
66.93

375.3
(6 minutes)

2777.5
(46 minutes)

22220.9
(6 hours)

170553.6
(47 hours)

Fig. 1: LP solving time for TE in different topologies with random edges that
are 3x the node count. For topologies with less than 500 nodes, results are
averaged over 100 runs on the hardware detailed in §VI; for those with more
nodes, results are averaged over 5 runs on the same machine with an extra
768G memory to run Gurobi solver. Both x- and y-axis are in log scale.

entiation engine [37], integrating it as a differentiable
“plugin” that can be directly embedded into any DNN
training framework. We also provide functions and tem-
plates for user-defined TE metrics, network modeling
and flexible use of dNE’s modules. To demonstrate its
usability, we implement three goal-driven DNN-based TE
algorithms trained with metric gradients and a traditional
DRL algorithm using dNE.

• Using dNE, evaluations show that our new goal-driven
DNN-based algorithms can reduce the optimality gap by
up to 12.6x than the existing DRL-based TE algorithm
and deliver 13374x faster decision-making time than LP.
Moreover, dNE provides 1037x simulation acceleration
during model training when compared to traditional sim-
ulator ns3 [24]. Additionally, dNE’s robust performance
on extreme topologies with thousands of nodes further
demonstrates its strong scalability.

II. BACKGROUND & MOTIVATION

We begin with the background of SDWAN TE, then discuss
existing DRL algorithms and their limitations, and finally
motivate dNE.

A. TE in SDWAN

TE in SDWAN allocates traffic of each source-destination
pair (i.e. a flow) to its available paths considering various con-
straints like link capacities, aiming to optimize a TE objective
such as maximum link utilization (MLU) [25, 26, 28, 29, 49].
To deal with traffic dynamics, modern TE systems necessitate
frequent updates (e.g. every 5 minutes [11, 29]) to traffic allo-
cation decisions according to real-time traffic demand of the
network. During the interval between updates, quick decision-
making is crucial to minimize the time spent with outdated
decisions that could potentially lead to performance degra-
dation during each update cycle. The centralized controller
in SDWAN provides a white box network environment for
TE, including traffic demand, available routing paths for each
flow and link capacity, which are sufficient for formulating
TE objectives such as MLU [25, 26, 29]. In addition, SDWAN
controller applies TE decisions to network at traffic demand
level which only considers demand value on paths and is
irrespective of low-level packet behaviors [25, 26].

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

Following the characterization by Kumar et al. [29], TE
system makes two specific decisions for each flow in its for-
mulation: (1) candidate paths, which can be multiple possible
paths from the source node to its destination of current flow,
and (2) splitting ratios, referring to the fraction of traffic
demand allocated to each candidate path for current flow. For
candidate paths, production SDWANs typically use a prede-
termined path set and remain this set unchanged during online
TE [11, 25, 26, 29, 49]. For example, Smore [29] uses oblivious
routing [13] to select k candidate paths for each flow, while
other works [11, 49] simply use k-shortest paths. Splitting
ratios are usually determined online periodically such as every
5 minutes mentioned above. A traditional approach to obtain
optimal splitting ratios is to formulate linear programs (LP)
to optimize the TE objective [25, 26, 29]. Other works, known
as equal-cost multi-path routing (ECMP), equally distribute
traffic across candidate paths [15, 18, 20]. ECMP eliminates
the time required to solve optimization problems in trade of TE
performance, as demonstrated in our evaluation in §VI-B. TE
decisions in our work will follow the manner mentioned above,
which calculates splitting ratios online periodically based on
pre-determined candidate paths.

While LP provides optimal performance, its runtime is non-
negligible. As shown in Fig. 1, a 70-node topology requires
over 5 seconds for TE decision-making. Moreover, LP runtime
escalates rapidly with the increase in topology size, leading to
extremely huge decision-making time for larger topologies.
Fig. 1 shows that the runtime is 0.02 seconds for a 10-node
topology, but it extends to about 2 days for that of 2000 nodes.
The non-negligible runtime and substantial time increase in
larger topologies are undesirable for TE, which cause TE
system to experience performance loss with outdated decisions
during LP solving, or it may not even finish solving new
decisions within the entire update period (e.g. 5 minutes).
Thus, we are tempted to use DNNs, which make TE decisions
through model inference, potentially bringing faster decision
speeds and slower runtime increases.

B. DRL for TE
Along with the success in solving complex online control

problems [40], DRL algorithms are used to deal with TE
in WAN [21, 33, 42–44, 49], including recent work Teal [48].
These algorithms work to determine how to distribute traffic
to candidate paths for each flow to achieve optimization
objectives. By leveraging the model inference of RL agents,
they offer fast and efficient TE decision-making in response to
fluctuating network traffic. However, these approaches rely on
discrete event-based network simulators or algorithms, such
as OMNet++ [45], ns3 [24] and non-differentiable formula-
tions [48], to simulate network environments and evaluate
TE decisions, and they basically distribute traffic at packet
or finer-grained flow level. This is because these TE works
focus on these lower-level behaviors, such as packet queuing
and forwarding, which behave irregularly and cannot be fully
modeled mathematically.

However, relying on discrete event-based network simula-
tors or algorithms lead to inefficient TE. First, discrete event-
based network simulators or algorithms have slow speed to

evaluate TE decisions, which limits training speed. Empirical
evidence in §VI-D shows that training DRL for TE on a topol-
ogy with 73 nodes for only 100 epochs should take over 70
hours with the commonly used traditional simulator ns3 [24].
Second, it limits DNN-based TE approaches only to DRL
algorithms. These simulators have inherent non-differential
properties because the lower-level behaviors are hard to model,
which cannot support more promising training paradigms that
are supervised by direct gradients from TE metric functions.
Such paradigms require a differentiable function mapping TE
decisions to metrics rather than treating TE metrics as scalar
values without gradients as existing methods. Those DRL-
based algorithms may lead to less optimistic TE performance
due to the inherent limitations of DRL, e.g. sampling DRL
actions inefficiently [14] and large variance of training results
between two consecutive training epochs [35]. Third, per-
packet traffic distribution among selected paths is not practical
in reality. The low-level information (such as packet-level)
is hard to obtain in a timely manner. For example, traffic
collection tools in production, e.g., iFIT [3] and sFlow [7],
can only collect low-level data every five minutes, because
network devices cannot afford the computational resources to
implement more accurate and timely collection.

In SDWAN, information is abstracted at the flow-demand
level rather than the packet level, with demands for all flows
clearly provided by the centralized controller [25–27]. The
controller also assigns flows to certain candidate paths based
on specific demand values solved by TE algorithms, while
the controller backend can handle packets to ensure the
entire network remains aligned with the decisions. This avoids
solving irregular low-level behaviors with DNN models which
existing works struggle with, paving the way for improved
DNN-based TE approaches2.

C. dNE’s Benefits

dNE’s primary goal is to create a network simulator that has
a fully-differentiable process for evaluating TE decisions and
computing TE metrics by interacting with network environ-
ment. It should enable direct gradients from TE decisions to
metrics, allowing direct DNN model updates through how the
metrics correspond to the decisions. Unlike traditional meth-
ods relying on discrete event-based simulators or algorithms
that compute TE metrics as scalar values without gradients,
dNE eliminates the need for value function approximation
or random sampling in DRL, resulting in faster convergence
and better performance. So the first advantage of dNE is its
differentiable computation, which enables direct gradient guid-
ance and allows the use of goal-driven optimization [17, 41]
supervised by gradients of TE metric functions to train DNNs
instead of DRL’s approximate value functions. The second
advantage is that dNE is designed as a plugin easily integrable
into any DNN training framework, facilitating the exploration
of different DNN architectures for various use cases.

To achieve this, dNE leverages the principles of differen-
tiable programming [19, 30], where programs are designed to

2We specifically focus on SDWAN in this paper, so methods are not suitable
for fine-grained control systems [16, 34] that focus on packet behaviors.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

derive gradients automatically using Automatic Differentiation
(AD) [37, 46, 47]. For example, PyTorch [6] uses built-in
differentiation engine, torch.autograd [37], to construct
a computational graph that traces operations from input tensors
to output tensors, enabling gradient computation via the chain
rule. dNE implements its fully differentiable SDWAN simula-
tor following this paradigm, supporting gradient propagation
from TE decision to metrics and finally to learning models.
By modeling the network environment and evaluating TE
decisions as differentiable matrix operations, dNE eliminates
time-consuming simulations at low-level, allowing faster com-
putation of TE metrics.

III. DESIGN

We present dNE’s designs in this section. We first illustrate
the overall workflow of dNE in §III-A, and then describe
its network model in §III-B. Lastly, we introduce dNE’s key
components in §III-C.

A. System Overview

dNE is a lightweight network simulator that evaluates TE
decisions and outputs corresponding TE metrics using fully-
differentiable functions that interact with the network envi-
ronment in SDWAN. Its simulation operations are modeled
as a series of differentiable matrix operations as described
in §III-C. Designed as a plugin, dNE can be seamlessly
integrated into the training frameworks of various deep learn-
ing models and learning paradigms, including goal-dirven
optimization with direct metric gradients unexplored before,
where TE metric-related functions are directly used as the loss
function for gradient updates. It is also applicable to traditional
DRL, where the TE metric is treated as a scalar.
Overall Workflow. dNE has two stages to analyze and
evaluate TE decisions: Network Evaluation and Network
Summarization. Evaluation stage calculates the statistics of
network states after applying given TE decisions from DNNs,
providing necessary information for defining various perfor-
mance metrics. Summarization stage focuses on processing
the user-defined functions and outputting the corresponding
TE metrics, gradients or rewards. Former stage only involves
internal calculations within dNE, while the latter is open for
users to program. Note that dNE’s key design principle of
calculations is to ensure entire process is differentiable and
can be integrated into gradient chains, rather than simply
calculating a TE metric as a scalar as done in previous works.
Details of dNE’s overall workflow is shown in Fig. 2.

1) First, DNN model outputs TE decisions for all flows
according to current traffic, and dNE takes them as
input. 1⃝ When new traffic matrix arrives, the DNN
receives it as input. 2⃝ DNN performs inference and
outputs corresponding TE decisions for evaluation. As
discussed in §II-A, we focus on online performance on
pre-determined paths, so decisions here refer to splitting
ratios as most of related works [25, 29, 49].

2) Second, Network Evaluation stage analyzes TE deci-
sions to obtain related network states. 3⃝ It first evaluates

DNN Model for TE

Traffic Matrix

1

Network Evaluation

Network Summarization

Gradients/

Rewards

TE

Decisions

Network States

TE Metrics

Network Model

User-Defined

Functions

2

4

3

5

6
7

Traffic Matrix Link CapacityCandidate Paths

Network Model Input

Congestion LossThroughput

Output

Maximum Link

Utilization

dNE

TE Metric/Objective

Functions

DNN Loss/DRL

Reward Functions

Function Input

Fig. 2: dNE overview.

decisions in network environment, where necessary net-
work components, such as candidate paths, traffic, and
link capacity, are designed to be modeled as matrices.
4⃝ Then, it outputs the evaluated states, which users can

directly utilize to define their functions. For instance, the
aggregated traffic demand on each link can be derived
from the evaluated state and used to compute common
TE metrics, such as MLU.

3) Third, Network Summarization stage calculates user-
defined TE metrics. 5⃝ Users can utilize network states
and network models to define and program their own
TE metric functions, which are then stored in dNE.
6⃝ Initially, dNE provides differentiable formulations

of common TE metrics, such as MLU, throughput, and
congestion loss, as mentioned in [29].

4) Finally, DNN model is updated with metric gradients.
7⃝ Gradient chain in Summarization stage is calculated

during the process of computing TE metrics with user-
defined functions, which are then used to update DNN
model. Alternatively, the gradient can also be ignored,
and the TE metric can be treated as a scalar reward
to develop a DRL algorithm with dNE. For example,
(user-defined) MLU function can serve as a training loss
function or its negative value can be used as a DRL
reward to serve both gradient-based and DRL training.

In this workflow, DNNs only take the traffic matrix as
input, while topology information, such as link capacity and
candidate paths, is implicitly incorporated into the dNE plugin
during training. This design ensures that DNNs focus exclu-
sively on traffic features without being influenced by the static
topology, leading to more accurate TE decisions and avoiding
duplication information in model inputs. But please note that
DNNs in our framework do not include any (static) neurons
that simulate or encode the network topology. They are solely
responsible for producing TE allocation results based on traffic
input, while the network context is evaluated by dNE. dNE
with these topology information exists only within the training
framework instead of the models themselves.

B. Network Model

We model necessary network environment information for
evaluating TE decisions, including candidate paths, traffic, and
link capacity in dNE’s current design for example as shown
in Fig 2. These can be modeled as matrices or vectors.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

Notation Definition

Inputs

Ce Capacity on link e

Df Traffic demand on flow f

P i
e Binary encode indicating whether link e is on path i

Auxiliary Le Aggregated traffic demand on link e

TE decision W f
i Traffic fraction of flow f on path i (Splitting ratios)

TABLE I: Notations used in dNE.

Consider the topology as a graph G = (V,E), where V
represents set of nodes and E the set of links. As shown in
Table I and Fig. 3, link capacity in topology can be modeled
to vector C with the length of |E|. Traffic demand is usually
in the form of matrices in production SDWAN [28, 29, 36],
and we flatten it into a vector D to facilitate the following
matrix operations of dNE shown in Fig. 3. We have |F | =
|V | × |V | flows, so vector D is with the length of |F |. For
each flow, there are k candidate paths used to distribute its
traffic, so we have k×|F | paths in total. The binary path-link
relationship matrix P is with the size of (|E|, k×|F |), where
P i
e equals 1 if path i traverses through link e and otherwise

0. After obtaining splitting ratios for all flows in DNN model,
we transform them to flow-path relationship matrix W with
the size of (k × |F |, |F |). We fill W f

i with 0 if path i is not
the candidate path for flow f , otherwise the relative splitting
ratio obtained from DNN will be assigned. As outlined in
Smore [29], modern SDWAN controllers require dNE’s TE
decisions to allocate all demands for each flow, ensuring the
splitting ratios across its k candidate paths sum to 1. This can
be achieved by applying softmax [8] function in the output
layer of a DNN model.

C. Network Evaluation and Summarization

In this section, we show detailed designs of Network
Evaluation and Network Summarization components in dNE.
Network Evaluation. Evaluation stage plays a crucial role
in providing users with a clear understanding of network’s
states after applying given TE decisions to current network
environment. Network states should be modeled to indicate
real-time network statistics, which are unambiguously deter-
mined and accessible to users to calculate custom metrics. In
dNE’s current design, we use aggregated traffic on each link
as our example network states, which is enough to support
common TE metrics calculation mentioned in Smore [29] as
we will show in Summarization stage. The aggregated traffic
can be represented as a vector L with length |E|. The vector
format enables easy matrix operations within dNE.

Le should sum up all splitting traffic from all flows which
are distributed to link e. As Fig. 3 shows, based on candidate
paths and traffic demand (matrix P and D) in network model
and the given TE decisions (matrix W), we calculate Le using

Le =
∑
f

∑
i

P i
eW

f
i Df . (1)

In modern SDWAN [29], TE decisions do not constrain ag-
gregated traffic on links within capacity (Le ≤ Ce) but instead

L!"C!"D

WP!"C!"D

Network Evaluation Stage

X =X

1.4

…

3.9

0.2

9.6

0.8

7.9

F
lo

w
s
 (
f)

D

22.0

…

9.7

34.2

4.9

L
in

k
s
 (
e
)

LP W

0

0

0

0

…

0.2

0.4

0.1

0.3

……

P
a
th

s
 f

o
r

fl
o

w
 1 Flows (f)

P
a
th

s
 (
i)

P
a
th

s
 f

o
r

fl
o

w
 |
F

|

0.1

0.2

0.1

0.6

…

0

0

0

0

Paths for flow 1

1

…

1
1

0

0

…

1
0

1

0

…

1
0

1

1

…

1
1

0

…

…

Paths (i)

Paths for flow |F|

0

…

1
0

0

1

…

0
0

1

1

…

1
1

0

0

…

1
0

1

0

…

0
1

0

1

…

0
0

0

1

…

1
0

0

1

…

0
1

0

L
in

k
s
 (
e
)

Network Summarization Stage

MLU

CongLoss

TP

TE Metrics

Gradient

dNE Output

max
e

min , 1
30.0
…

50.0

L
in

k
s
 (
e
)

C

L22.0
…
4.9

L
in

k
s
 (
e
)

L

sum
f

CongLoss
0.8
…
7.9
1.4

F
lo

w
s
 (
f)

D

,
maxsum

e

22.0
…
4.9

L
in

k
s
 (
e
)

L

30.0
…

50.0

L
in

k
s
 (
e
)

C

0.0
…
0.0

L
in

k
s
 (
e
)

0

User-defined Metrics DNN OutputNetwork Model

dNE Input

Fig. 3: Matrix operations for network evaluation and summarization.

allocate all traffic demands as discussed before, discarding
excess traffic per link. A common TE metric to measure this
demand loss is congestion loss [29], as discussed later.
Network Summarization. Network Summarization summa-
rizes real-time network performance with various user-defined
TE metrics and computes DNN loss/reward functions based on
the network states obtained from the Evaluation component.
The Summarization stage is customizable and can be pro-
grammed by users using available variables in network states
and models. Details can be found in §V.

dNE initially defines three common and crucial TE met-
rics [29]: maximum link utilization (MLU), congestion loss
(CongLoss), and throughput (TP). They are also widely used
in most of famous TE works [11, 25, 26, 28, 29, 49]. They can
be calculated by a series of simple matrix operations such as
maximum, minimum, and summation, as shown in Fig. 3. The
details are as follows:

• Maximum link utilization (MLU). This represents the
maximum value of link utilization among all links. Note
that a link cannot carry traffic that is more than its
capacity. So link utilization value is up to 1, and traffic
exceeding its capacity will be dropped. That is,

MLU = max
e

(min(Le/Ce, 1)). (2)

• Congestion loss. We calculate the dropped traffic due
to congestion on all links. Since we satisfy all traffic
demands when considering TE decisions, a link may
carry traffic more than its capacity, and exceeding parts
will be dropped. We sum up all dropped traffic on all
links across the topology. That is,

CongLoss =
∑
e

max(Le − Ce, 0). (3)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

• Throughput. We calculate actual transmitted demand after
dropping the congested traffic. That is,

TP =
∑
f

Df − CongLoss. (4)

The optimization objectives of DNNs can be TE metrics
described above. Users can also design more complex loss
functions for gradient-based learning methods or reward func-
tions for DRL that are related to the specific objective TE
metric. Using AD, dNE is able to calculate the gradients and
update the models under the guidance of these functions.

IV. DNN-BASED TE USE CASES

We introduce several simple examples to show how to de-
sign DNN algorithms with dNE in order to solve TE problems.
Three typical DNNs will be introduced: fully connected neural
network (FC) [38], long short-term memory (LSTM) [22],
and convolutional neural network (CNN) [23]. DRL method
following previous work [49] will also be implemented in
its dNE version. For all DNN models, the original input
is the unflattened traffic matrix with the size of |V | × |V |,
and it outputs TE decisions (splitting ratios) with the size of
k × |V | × |V |. Then the output values will be used to form
matrix W for dNE.

Our TE objective here is to minimize MLU, a widely
used metric in TE research [25, 29, 49, 51], which balances
traffic load across network links. We use goal-driven opti-
mization [17, 41] with dNE, which directly utilizes the MLU
calculation function as the loss function to update DNNs.
We avoid the traditional supervised paradigm, as it requires
computing ground-truth TE metrics (scalar labels) for different
sample traffic and topologies using linear programming, which
is highly time-consuming (§II-A). For DRL-based approaches
that maximize rewards, dNE uses the negative value of the
computed MLU as a scalar reward to minimize MLU.
FC-TE. In FC-TE, input layer flattens original traffic matrix,
and output layer provides splitting ratios in vector form
directly. Besides, we use several hidden layers in FC. Neurons
in these layers use activation functions (e.g., ReLU [12]) to
add non-linear factors, enhancing the expression ability of the
model. FC is the most basic and simplest DNN that we can
come up with. It has a simple neural network structure and a
relevant small model size, making it easy to train with little
inference time. But at the cost of these advantages, it may
not always give optimistic performance because its simple
structure may not adequately express the complexity of the
problems we need to solve.
LSTM-TE. We input one flow’s demand into one LSTM cell
sequentially, thus entire model has |V | × |V | cells in total.
Then, we concatenate hidden states in all cells as input of
a fully connected neural layer, which outputs the splitting
ratios. Assuming that each LSTM cell H hidden states, the
fully connected layer has H × |V | × |V | input neurons. We
regard the model as allocating traffic flow by flow: each cell’s
hidden layer represents current flow’s allocation information,
and latter flows can consider decisions of previous flows by
passing information in sequential cells. With a unified loss

function, each flow adjusts its own hidden states to make an
overall good performance for all flows.

This structure can explore each flow’s strategy in individual
cell while considering relationship between nearby input flows,
possibly leading to better model expression ability and perfor-
mance than FC-TE. However, LSTM-TE may not perform well
in large topologies because: 1) With too many LSTM cells,
later ones can hardly remember previous information due to
LSTM’s inherent short-term feature; 2) It takes much inference
time in long LSTM sequence.
CNN-TE. In CNN-TE, we maintain traffic input in its orig-
inal 2D-matrix form (i.e., length and width are both |V |,
and channel size is 1). For each layer in learning model,
besides convolution operations, we apply batch normalization
to enable fast and stable training, add ReLU activation to add
non-linear factors, and apply max pooling to compress the
data/parameters and avoid over-fitting. Then, the output of the
final CNN layer will be fed into a fully connected neural layer,
which will output the splitting ratios.

Obviously, CNN-TE can benefit from spatial features in
original traffic matrix, leading to possible better performance.
Also, it may alleviate LSTM-TE’s problems: 1) CNN-TE
can consider the relationship between flows without forgotten
features in LSTM; 2) As topology scale increases, model
inference in CNN-TE needs one-pass of the same structured
model just with a larger input width, but LSTM-TE needs
to pass more LSTM cells and its number has rapid growth
speed, leading to more TE decision time. Evaluations in §VI
have proven our arguments here. But certainly, CNN-TE is
harder to train and has more inference time than FC-TE since
it has more complex model structure.
DRL-TE. Its design is similar to previous work [49], but the
key difference is that we rely on dNE for reward calculation
instead of traditional simulator. And the RL states are real-
time network dynamic environments, including traffic matrix,
aggregated traffic on links and throughput. The RL actions
provide splitting ratios of all flows and its reward is the
negative value of MLU. We use the actor-critic structure to
implement RL [49], where the actor network receives RL
states as a vector and outputs RL actions, critic network
uses the concatenated vector of RL states and real-time RL
actions as input and outputs a scalar representing the reward
expectation. As we have mentioned in §II, RL has its own
limitations such as sample inefficiency and variance in results,
which may result in long training time to converge with
less optimistic TE results. We implement DRL-TE in dNE’s
version just as a comparison to the newly proposed DNNs
above trained with metric gradients.

Users can choose the most appropriate DNN-based ap-
proach based on specific needs following these use cases.

V. IMPLEMENTATION

We implement dNE with fully-differentiable computing and
network model building. The detailed code is provided in the
footnote following the corresponding contribution item in §I.
Specifically, we are able to prototype all matrix operations in
our design (§III) using PyTorch [6], leveraging its automatic
differentiation (AD) support [37].

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

We utilize these operations to implement dNE’s two key
stages: Evaluation() and Summarization(), and provide tem-
plate and example files demonstrating how to use these func-
tions to create TE algorithms with goal-driven optimizations
and metric gradients for any DNN model. Users can also
register custom TE metric functions in Summarization().

Additionally, we build utilities to transform topology data,
including candidate paths, traffic demands, and link capacities,
into the matrix format required by dNE. These inputs can
be sourced from XML files in the Internet Zoo Topology
dataset [4] which can then be tackled with NetworkX package
in Python [5], or from plain text formats in famous TE
simulation tool Yates [28].

VI. EVALUATION

We are mainly interested in answering the following three
questions in dNE’s evaluations:

• How do various DNN-based TE algorithms perform? Can
we find better ones beyond DRL-TE with dNE? (§VI-B)

• Can DNNs trained with dNE accelerate TE decision-
making? (§VI-C)

• Can dNE accelerate DNN-based TE training? (§VI-D)
Environment Settings. We have two computing environ-
ments: a GPU environment with an Nvidia GeForce RTX 3090
GPU, and a CPU environment with 4 Intel Xeon Platinum
8268 24-Core processors and 128GB RAM. We use the
GPU one for model training and inference of DNN-based
algorithms, while the CPU one is used for traditional CPU-
only TE methods, such as LP, and other evaluations, including
DNN training time evaluation on traditional simulators. Except
for GPU one, model inference time will also be evaluated
in CPU environment to ensure a fair comparison with LP
optimization, which is only conducted on CPU. For TE setups,
we use k = 4 candidate paths per flow calculated with
oblivious routing method mentioned in Smore [29].
DNN Settings. Our DNN model settings are as follows: FC-
TE has three hidden layers with 256, 512, and 256 neurons
in each layer, respectively. LSTM-TE has a hidden state
dimension of 16 for each LSTM cell. CNN-TE consists of
three layers with output channels number of 16, 32, and 64
in each layer. It also uses a 3 × 3 kernel size with a stride
length of 1 for convolution, and a 2 × 2 kernel size with a
stride length of 1 for max pooling. DRL-TE uses two hidden
layers, with 512 and 256 neurons in each layer, for both the
actor and critic networks that are FC DNN models.
Training Details. We apply common training techniques to
gain best performance of all DNN models. We reduce learning
rate by a factor of 10 every 20 epochs, achieving larger initial
rates for faster convergence and smaller rates later for finer
optimization. Training stops when loss change over 5 epochs is
below 10−6 (convergence) or after 100 epochs. We test starting
learning rates of 0.1, 0.01, and 0.001 and report the best re-
sults. We normalize DNNs’ inputs (traffic demand matrices) to
a range of 0 to 1 to improve model generalization and stabilize
training. We use Adam [1] as optimizer of training, which
improves over SGD [9] by accelerating convergence with
momentum and reducing training oscillations. We also apply

Topology # Nodes # Links # Traffic Matrices Granularity
Abilene 12 30

4500 + 500
(Train + Test)

5 mins
Geant 22 72 15 mins

Iris 51 128 1 hour
Intellifiber 73 194 1 hour

TABLE II: Evaluated network topologies with bi-directional links.

weight decay [10] to optimizer, which prevents overfitting by
adding regularization terms to loss functions, improving model
generalization. We have tested decay values of 0.1, 0.01, and
0.001 and report the best results.

A. Experiment Setup

Topologies and traffic traces. As shown in Table II, Abilene
and Geant are two backbone networks widely used in existing
TE works [28, 29, 32], and we obtain their topologies and 5000
real traffic matrices from SNDLib [36], with a granularity
of 5 and 15 minutes for Abilene and Geant, respectively.
Iris and Intellifiber are two real topologies from Internet
Topology Zoo [4], with 5000 realistic traffic matrices each
generated using YATES [28] with a granularity of 1 hour.
Note that this section focuses on topologies with dozens of
nodes, as these topologies are commonly studied in traditional
TE works [25, 26, 29, 49], while more extreme topologies are
evaluated in §VII to show the good scalability of dNE. We use
the first 4500 traffic matrices for model training and the rest for
testing for all topologies. The learning models are trained of-
fline and deployed online for inference only during testing. We
scale all traffic following the method in Smore [29] to ensure
the minimum MLU of testing is 0.4, reflecting traffic patterns
observed in traditional overprovisioned SDWANs [25, 26]. We
set the capacity of all links to 1Gbps for all topologies. All
evaluation results are on average of 500 testing matrices.
Schemes compared. Besides the DNN-based TE algorithms
training with dNE mentioned in §IV, we also compare two
traditional methods:

• ECMP: Traffic of a flow should be evenly distributed to
its candidate paths as previous work [20]. Specifically,
since we have k = 4 candidate paths for a flow, each
candidate path should carry 25% of its traffic.

• Optimal: LP problem is formulated to obtain the optimal
TE decisions, which is similar to prior work [25, 29].
Recall that our TE objective is minimizing MLU (§IV),
following notations in Table I, we should compute the
splitting ratios {W f

i } with LP formulated as follows:

min Z (5)

s.t.
∑
i

W f
i = 1,∀f, path i belongs to flow f . (6)

W f
i ≥ 0,∀i, f, path i belongs to flow f . (7)

Le =

∑
f

∑
i P

i
eW

f
i Df

Ce
,∀e. (8)

Le ≤ Z,∀e. (9)

Constraints (6) and (7) enforce that TE decisions satisfy
demands for all flows and all traffic allocations are non-

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

Topology Optimal ECMP FC-TE LSTM-TE CNN-TE DRL-TE

Abilene 0.6649 0.9735 0.7183 0.7019 0.6837 0.9447

Geant 0.5461 0.9392 0.6167 0.5992 0.5891 0.9244

Iris 0.6370 0.7411 0.6602 0.6829 0.6405 0.7292

Intellifiber 0.6452 0.8034 0.6890 0.7114 0.6478 0.7772

TABLE III: Average maximum link utilization (MLU).

Topology Optimal ECMP FC-TE LSTM-TE CNN-TE DRL-TE

Abilene 1.0 0.9372 0.9999 1.0 1.0 0.9330

Geant 1.0 0.9835 1.0 1.0 1.0 0.9776

Iris 1.0 0.9992 1.0 1.0 1.0 0.9996

Intellifiber 1.0 0.9970 1.0 0.9995 1.0 0.9982

TABLE IV: Average normalized throughput.

negative. Constraints (8) and (9) limit link utilization to
its maximum value Z for all links. We implement this
LP in the CPU environment using Gurobi Optimizer [2].

B. Performance on TE Metrics

We show evaluation results of TE metrics defined in §III-C
on different methods. All results in this section are evaluated
on the testing set using dNE and DNNs trained on the training
set unless stated otherwise. We start by analyzing MLU, which
is our TE objective. Overall, Table III shows that the new goal-
driven optimization methods (FC-TE, LSTM-TE, and CNN-
TE) newly proposed in our work always outperform the RL-
based method (DRL-TE) and the traditional ECMP method in
all topologies, indicating the effectiveness of DNN learning
with goal-dirven optimizations in solving the TE problem
with dNE’s help. Averaged over the four evaluated topolo-
gies, ECMP and DRL-TE suffer from 39.81% and 36.57%
additional MLU compared to Optimal, but only 7.85%, 8.19%
and 2.91% for FC-TE, LSTM-TE and CNN-TE, respectively.
Our new methods significantly reduce additional MLU by
up to 13.7x and 12.6x compared to ECMP and DRL-TE,
respectively. Furthermore, DRL-TE can only reduce MLU
by approximately 2.5% compared to traditional ECMP, high-
lighting the importance of exploring DNN-based TE methods
beyond DRL with dNE framework in order to improve its
performance on TE metrics.

The MLU results also validate our analysis of the pros and
cons of the new methods discussed in §IV. First, CNN-TE
always achieves the lowest MLU due to its strong ability
to capture spatial features in its 2D matrix input, reduc-
ing additional MLU by 2.7x and 2.8x compared to FC-
TE and LSTM-TE on average of four topologies. Second,
FC-TE performs worse than LSTM-TE in the medium-sized
topologies due to its simple FC structure and limited model
expression capability. LSTM-TE reduces the additional MLU
by 1.4x compared to FC-TE on average of Abilene and Geant.
However, in larger topologies, FC-TE outperforms LSTM-TE
due to its short-term memory in longer LSTM sequences. On
average of Iris and Intellifiber, FC-TE reduces 1.7x additional
MLU compared to LSTM-TE.

Results for throughput and congestion loss (Table IV and
Table V) under the MLU objective are in line with previous

Topology Optimal ECMP FC-TE LSTM-TE CNN-TE DRL-TE

Abilene 0.0 0.0628 0.0001 0.0 0.0 0.0670

Geant 0.0 0.0165 0.0 0.0 0.0 0.0223

Iris 0.0 0.0008 0.0 0.0 0.0 0.0004

Intellifiber 0.0 0.0030 0.0 0.0005 0.0 0.0018

TABLE V: Average normalized congestion loss.

Topology
MLU Normalized throughput Normalized congestion loss

Optimal ECMP CNN-TE Optimal ECMP CNN-TE Optimal ECMP CNN-TE

Abilene 0.6799 0.9819 0.6912 1.0 0.9381 1.0 0.0 0.0619 0.0

Geant 0.5732 0.9411 0.5989 1.0 0.9846 1.0 0.0 0.0154 0.0

Iris 0.6298 0.7713 0.6314 1.0 0.9995 1.0 0.0 0.0005 0.0

Intellifiber 0.6501 0.8211 0.6514 1.0 0.9977 1.0 0.0 0.0023 0.0

TABLE VI: TE metrics in training set.

findings on MLU. First, ECMP and DRL-TE perform the
worst in all topologies, evidenced by higher normalized con-
gestion loss and suboptimal throughput. On average, ECMP
and DRL-TE have normalized congestion loss of 2.1% and
2.3%, respectively, while all other methods have much reduced
loss below 0.02%. Second, CNN-TE outperforms other DNN-
based methods with the optimal throughput. Third, FC-TE may
not be optimal in some topologies such as Abilene, with a
0.01% higher congestion loss compared to Optimal. LSTM-
TE may not perform well in larger topologies, with a 0.05%
additional congestion loss in Intellifiber.

One may be interested in the same metrics on training set.
Table VI shows CNN-TE’s results as a representative since
it is the most efficient model we have evaluated so far. We
compare its performance with optimal LP and the baseline
ECMP. Results on the training set show similar conclusions
to those on the testing set, indicating that our DNNs are
well-trained without issues such as overfitting. On average of
four topologies, ECMP incurs 39.34% additional MLU, while
CNN-TE incurs only 1.6%. CNN-TE also demonstrates opti-
mal performance in throughput and congestion loss, consistent
with its performance on the testing set.

C. TE Decision Acceleration

This section evaluates the runtime (i.e. TE decision time)
of various TE algorithms, which refers to LP solving time for
Optimal and model inference time for DNN-based algorithms.
ECMP employs a static evenly distributed scheme without a
decision time. Given the near-to-optimal performance on TE
metrics, we explore whether DNN-based TE methods have
significant runtime acceleration over Optimal. To ensure a fair
comparison, we report model inference time in both CPU and
GPU environments, as Optimal can only be executed on CPUs.

Overall, Table VII shows that DNN-based methods exhibit
faster TE decision speed compared to Optimal. On average
of four topologies, the decision-making in FC-TE, LSTM-
TE, CNN-TE and DRL-TE are 13374x, 87x, 1734x and
10196x faster than Optimal in GPU inference, and 1066x,
16x, 99x and 889x faster in CPU inference, respectively.
Among DNN-based algorithms, LSTM-TE is the most time-
consuming method in both two environments, especially in

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

Topology Optimal ECMP
FC-TE LSTM-TE CNN-TE DRL-TE

GPU CPU GPU CPU GPU CPU GPU CPU

Abilene 35.7913 - 0.1077 0.3223 1.2534 5.2685 0.4319 1.2680 0.1318 0.3046

Geant 225.6312 - 0.1184 0.4731 3.0774 25.3436 0.5606 2.1612 0.1463 0.5127

Iris 2201.3738 - 0.1576 1.3708 21.0783 104.6545 0.8974 18.8933 0.1877 1.6551

Intellifiber 6723.6895 - 0.1803 3.2472 47.4246 247.2045 1.6823 46.1550 0.2468 4.0321

TABLE VII: Average TE decision time (milliseconds).

Optim
al

FC-T
E

LSTM
-TE

CNN
-TE

DRL
-TE FC-T

E
LSTM

-TE
CNN

-TE
DRL

-TE

Methods

0

25

50

75

No
rm

ali
ze
d
TE

 d
ec
isi
on
 T
im
e

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
06.
3

1.
1 2.
5

1.
3

1.
1

1.
5 4.
8

1.
7

1.
7

61
.5

1.
5 16

.8

2.
1

1.
4 4.
3 19

.9

14
.9

5.
4

1.
7

37
.8

3.
9

1.
9 10
.1

46
.9

36
.4

13
.2

GPU Environment CPU Environment
175
200
225

18
7.
9 Abilene

Geant
Iris
Intellifiber

Fig. 4: TE decision time normalized to Abilene for all methods.

large topologies. For example, in GPU environment, LSTM-
TE takes approximately 50ms to conduct inference in Intelli-
fiber, which is 263x and 28x slower than FC-TE and CNN-
TE, respectively. FC-TE and DRL-TE have similarly fast TE
decision speeds due to their simple FC model structures, taking
less than 0.3ms and 5ms in GPU and CPU environments,
respectively. CNN-TE has a moderate decision time between
FC-TE and LSTM-TE in all topologies. These results support
our earlier analysis in §IV.

Second, DNN-based algorithms show good scalability for
larger topologies, with TE decision times increasing at a
slower rate than Optimal in both two environments. This
is illustrated in Fig. 4, where the time of all topologies is
normalized to Abilene for each method. For example, in
Intellifiber. growth rate of DNN-based algorithms ranges from
1.7x to 37.8x in GPU environment and 10.1x to 46.9x in CPU
environment, while Optimal is 187.9x compared to Abilene.
Fig. 4 also shows that growth rate follows a similar pattern
to their absolute decision time, with LSTM-TE growing the
fastest, followed by CNN-TE, and DRL-TE and FC-TE the
slowest in both environments. Furthermore, GPU inference
time increases much faster than CPU inference for all DNN-
based methods, highlighting the benefit of GPU inference
acceleration for TE over traditional LP that can only process
on CPU, especially scaling to larger topologies.

In addition, note that though DRL-TE and ECMP have near-
to-zero decision time, they perform poorly on TE metrics
compared to new methods, making them not good choices
for TE. Alternatively, FC-TE has same TE decision time
with better performance, while CNN-TE also has negligible
decision time (<2ms) with even better performance.

D. Training Acceleration

We compare dNE with traditional discrete event-based sim-
ulators, in terms of accelerating the model training process
for TE. We use DRL-TE training as an illustration, which has

Topology
Training time (hours) Simulation time (hours)

dNE (GPU) dNE (CPU) ns3 dNE (GPU) dNE (CPU) ns3

Abilene 0.567 0.628 0.854 0.013 0.075 0.303

Geant 0.777 0.966 1.909 0.014 0.204 1.151

Iris 1.643 3.321 15.998 0.017 1.688 14.401

Intellifiber 3.111 9.620 73.367 0.022 6.534 70.278

TABLE VIII: The whole training time and simulation time for DRL-TE with
dNE and traditional simulator ns3 [24]. Note that simulation time only refers
to the process of obtaining RL rewards with TE decisions in the simulator,
while training time includes all training parts, such as model forwarding,
backpropagation, updates, network simulation, etc.

been widely explored with the traditional simulators in prior
works [21, 33, 42, 44, 49]. We compare the commonly used
traditional simulator ns3 [24] with dNE in both CPU and GPU
environments by training DRL-TE for 100 epochs. Table VIII
shows the whole training time and the corresponding network
simulation time within dNE and ns3.

Overall, evaluation results indicate that dNE significantly
accelerates model training compared to ns3, especially in the
GPU environment where traditional simulators cannot run. For
the entire training time, dNE is 9.32x and 3.94x faster than ns3
in GPU and CPU environments on average of four topologies.
In the largest topology, i.e. Intellifiber, it achieves 24x faster
training in GPU environment. Additionally, the gain is more
evident when only simulation time is considered, which refers
to the time from receiving the TE decisions to obtaining the
calculated RL rewards. dNE accelerates the simulation part
by 1036.8x and 7.24x on average compared to Optimal in
GPU and CPU environments, respectively. It can reach up
to 3194x faster simulation than ns3 in Intellifiber in GPU
environment. Note that dNE only replaces traditional simu-
lators in model training, while other training parts like model
forwarding and backpropagation are hard to accelerate, and our
high simulation acceleration rate shows dNE’s effectiveness in
accelerating the entire training process.

Also, dNE exhibits superior scalability compared to ns3 re-
garding training time as topology size increases. For example,
the training time of ns3 in Intellifiber, Iris, and Geant is 85.9x,
18.7x, and 2.2x higher than Abilene, while the values in dNE
are only 5.5x, 2.9x, and 1.4x in GPU environment, and 15.3x,
5.3x, and 1.5x in CPU environment, respectively. The same
trend holds for simulation time, where the time in Intellifiber
is 232x higher than Abilene for ns3 but only 1.7x and 87.1x
for dNE in GPU and CPU environments, respectively. Further-
more, the simulation time of ns3 becomes the bottleneck in
training with topology scaling, constituting only 35% of whole
training time in Abilene but 96% in Intellifiber. However, this
value in dNE decreases from 2% to 0.7% in GPU environment.
As simulation time in dNE grows much slower than ns3, it
takes less fraction of whole training time in larger topologies
and avoids network simulation becoming time bottleneck.

One may be curious about the training time of goal-driven
optimization paradigm with direct metric gradients, which we
present in Table IX. We still use CNN-TE as a representative.
The results show that training can be completed within half an
hour for all modern topologies, whereas DRL-TE takes more
than 3 hours for Intellifiber (Table VIII). This is because CNN-

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

Topology
Modern topologies Extreme topologies

Abilene Geant Iris Intellifiber G600 G800 G1000 G2000

Training time

(minutes)
4.12 6.78 13.13 20.80 52.08 88.60 132.52 511.81

TABLE IX: DNN training time (minutes) of various topologies with GPU.

Topology
Decision time Speedup

Optimal (LP)
(hours)

CNN-TE
CPU (ms)

CNN-TE
GPU (ms)

CNN-TE
(CPU)

CNN-TE
(GPU)

G600 1.320 192.67 4.23 2.5x104 1.1x106

G800 3.315 341.08 6.89 3.5x104 1.7x106

G1000 6.172 534.41 10.91 4.2x104 2.0x106

G2000 47.376 2230.31 43.38 7.6x104 4.1x106

TABLE X: Average TE decision time of 5 runs in the four extreme topologies
and the decision speedup of CPU and GPU inference in CNN-TE compared
to Optimal. Speedup refers to the ratio of the TE decision time in Optimal to
the time of current method.

TE with our new learning paradigm achieves faster learning
convergence due to the direct gradient guidance from metric
function, unlike the function approximation used by DRL-TE.

VII. SCALING TO EXTREME TOPOLOGIES

We have demonstrated in §VI that DNN-based algo-
rithms with dNE exhibit competitive TE performance and
fast decision-making speed in topologies with dozens of
nodes that are commonly studied in prior classic TE
works [25, 26, 29, 49]. However, this prompts questions about
its scalability to larger topologies in recent days. Given the
network expansion and increasing service demand, recently
some global cloud providers have continually added data sites
to their networks, causing SDWAN to expand to include
hundreds or even thousands of nodes [11, 48]. The primary
goal of this section is to evaluate whether DNN-based TE
with dNE can maintain its high performance of TE objective
and fast decision-making speed in these extreme topologies.

We randomly generate four extreme topologies (G600, G800,
G1000, G2000) with 600–2000 nodes and links 3x the node
count to evaluate CNN-TE, the representative DNN-based TE
method with dNE, which has a good balance between TE
decision time and performance as shown in §VI. We generate
5000 traffic matrices and split training and testing set following
methods in §VI-A. We use the same hardware stated in §VI,
except for increasing server memory to 768GB to run LP in
extreme topologies. We also increase the max pooling kernel
size of CNN-TE from 2 × 2 to 16 × 16 due to limited GPU
memory in RTX 3090. Other settings are the same as in §VI.
We compare CNN-TE with Optimal and ECMP.

Table XI shows that CNN-TE performs well in all ex-
treme topologies with only 1.8% additional MLU on average
compared to Optimal method, while ECMP has much higher
additional MLU of 23.0%, which is 13x than that of CNN-TE.
In addition, Table X shows that CNN-TE provides significant
runtime acceleration compared to Optimal, being O(106) and
O(104) faster in all topologies in GPU and CPU environments,
respectively. LP running in Optimal takes hours or even up to 2
days in these topologies, while CNN-TE takes less than 50ms

Topology Optimal (LP) CNN-TE ECMP

G600 0.6320 0.6451 0.7632

G800 0.6154 0.6233 0.7821

G1000 0.6284 0.6397 0.7562

G2000 0.6387 0.6521 0.7913

TABLE XI: MLU of the four extreme topologies.

in GPU environment, achieving timely decision-making. Also,
with topology scaling, the speedup ratio of CNN-TE’s runtime
to Optimal’s also increases in both environments, indicating
better decision time acceleration for larger topologies and good
scalability in CNN-TE. The robust MLU performance and
significant decision acceleration of CNN-TE demonstrate that
dNE maintains its advantages in these extreme topologies.

Table IX shows that training CNN-TE for all extreme
topologies can be efficiently completed within only half a
day. Note that traditional linear programming takes over 2
days to solve just a single traffic matrix (Fig. 1). Additionally,
this training process occurs offline before TE algorithm is
deployed, so this time does not affect online performance.

VIII. DISCUSSION

We first discuss recent related works [11, 48] that also aim
to reduce LP runtime in extreme WAN topologies (§VIII-A),
followed by the application of dNE in a running TE system
for model refinement, where new traffic matrices arrive con-
tinuously at each timeslot (§VIII-B).

A. Related Works for Large-Scale TE

NCFlow [11] clusters nearby nodes in topology and runs LP
in each cluster in parallel. However, this still takes minutes to
solve individual LP, which is far slower than our newly pro-
posed CNN-TE with dNE (<1 second with GPU inference).
Moreover, this separate LP approach results in suboptimal
performance due to its lack of a global topology view in each
LP formulation and the difficulty of developing an accurate
merging algorithm for individual cluster results.

Teal [48] uses a complex DNN combining GNNs and DRL
to accelerate TE decision-making by capturing network topol-
ogy and adjusting subflows, achieving fine-grained control for
specific operational needs. However, its discrete-event based
TE metric calculations, using ADMM for subflow tuning,
restrict calculation results to scalars. Thus, Teal still relies on
DRL training with slower convergence and suboptimal metrics
due to DRL’s inefficient value function approximations and
action sampling, without leveraging direct metric gradients
for model updates. These fine-grained control designs are
inefficient for general SDWAN operating at the demand of
entire flows (e.g., Smore [29]). In contrast, our method with
dNE uses differentiable TE metric functions with its direct
gradients, optimizing demand-level TE efficiently. Specifically,
we use simpler CNN-TE with dNE than Teal with DRL
to achieve near-optimal performance within 50ms on large
topologies (∼2000 nodes), compared to Teal’s several seconds
while still suffering from DRL-induced TE inaccuracy.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 11

Topology Abilene Geant Iris Intellifiber

Iterations 1 5 10 1 5 10 1 5 10 1 5 10

Time (ms) 9.2 40.2 77.3 41.6 193.4 360.2 200.1 923.7 1783.2 479.3 2017.5 3998.61

TABLE XII: Gradient update time (milliseconds) for CNN-TE with GPU
environment for a single traffic matrix across different iteration runs.

B. dNE for Running TE System

We have shown that dNE has strong performance and
scalability compared to existing methods (§VI and §VII).
One may wonder how to better utilize dNE in a running TE
system, where single new traffic matrix arrives every timeslot,
to further enhance accuracy of learning models. An intuitive
approach might be running a few gradient update iterations be-
fore making TE decisions. However, Table XII and Table VII
show that running just one iteration for CNN-TE takes ∼10x
longer than its decision time. Running additional iterations for
better accuracy would further increase the time required. Since
fast decision-making is critical to avoid outdated TE decisions,
which is one of dNE’s primary design goals, this significant
time cost makes such an approach impractical.

Instead, we propose a similar but more efficient method:
for each newly arrived traffic matrix, we use it only for
inference during the current timeslot while conducting gradient
updates at system backend for future timeslots. This fine-
tuning approach improves potential accuracy without delaying
TE decision-making. Our evaluation shows that it improves ac-
curacy by 3.1% (CNN-TE) on Abilene compared to approach
that does not fine-tune the model after it goes online.

IX. CONCLUSION

We propose dNE, a lightweight network simulator designed
to evaluate the performance of TE decisions in SDWAN.
It employs a set of fully differentiable matrix operations to
compute TE metrics of given decisions and enables direct
gradient chains from metrics to update DNN models. dNE
is implemented as a plugin within a training framework,
allowing users to train and explore the performance of any
DNN model on specific tasks and enabling other promising
training paradigms beyond DRL, such as our new goal-driven
optimization method with direct metric gradients presented
in this paper, for potentially better TE performance. With
the help of dNE, we identify several DNNs with our new
training paradigm that are better suited for SDWAN TE. Our
evaluations demonstrate that they can achieve near-optimal TE
performance, significantly outperforming conventional DRL
approaches. Furthermore, dNE facilitates fast TE decision-
making and model training, offering excellent scalability,
especially on larger network topologies.

ACKNOWLEDGMENTS

This work is supported in part by funding from the Re-
search Grants Council of Hong Kong (GRF 11209520, CRF
C7004-22G) and from CUHK (4937007, 4937008, 5501329,
5501517).

REFERENCES

[1] Adam Optimizer. https://pytorch.org/docs/stable/generated/torch.optim.
Adam.html.

[2] Gurobi Optimizer. http://www.gurobi.com.
[3] Huawei IFIT. https://info.support.huawei.com/info-finder/encyclopedia/

en/IFIT.html.
[4] Internet Topology Zoo. http://www.topology-zoo.org/.
[5] NetworkX. https://networkx.org/.
[6] PyTorch. https://pytorch.org/.
[7] SFlow Tool. https://inmon.com/technology/sflowTools.php.
[8] SGD Optimizer. https://pytorch.org/docs/stable/generated/torch.nn.

Softmax.html.
[9] SGD Optimizer. https://pytorch.org/docs/stable/generated/torch.optim.

SGD.html.
[10] Weight Decay. https://discuss.pytorch.org/t/weight-decay-parameter/

83023.
[11] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei

Zaharia, and Peter Bailis. Contracting Wide-Area Network Topologies
to Solve Flow Problems Quickly. In Proc. USENIX NSDI, 2021.

[12] Abien Fred Agarap. Deep Learning using Rectified Linear Units
(ReLU). arXiv preprint arXiv:1803.08375, 2018.

[13] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke.
Optimal Oblivious Routing in Polynomial Time. In Proc. ACM STOC,
2003.

[14] Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson,
Charles Blundell, and Demis Hassabis. Reinforcement Learning, Fast
and Slow. Trends in Cognitive Sciences, 23(5):408–422, May 2019.

[15] Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu,
Lihua Yuan, Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave
Maltz. Per-Packet Load-Balanced, Low-Latency Routing for Clos-Based
Data Center Networks. In Proc. ACM CoNEXT, 2013.

[16] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. AuTO: Scaling
Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic
Optimization. In Proc. ACM SIGCOMM, 2018.

[17] Chen, Wenqing and Sim, Melvyn. Goal-Driven Optimization. Opera-
tions Research, 57(2):342–357, March 2009.

[18] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic Engineering
with Equal-Cost-Multipath: An Algorithmic Perspective. IEEE/ACM
Transactions on Networking, 25(2):779–792, April 2016.

[19] Jonas Degrave, Michiel Hermans, Joni Dambre, et al. A Differentiable
Physics Engine for Deep Learning in Robotics. Frontiers in neuro-
robotics, 13(6):1–9, March 2019.

[20] M Dzida, M Zagozdzon, Michal Pioro, and A Tomaszewski. Opti-
mization of the Shortest-Path Routing with Equal-Cost Multi-Path Load
Balancing. In Proceedings of International Conference on Transparent
Optical Networks, 2006.

[21] Nan Geng, Tian Lan, Vaneet Aggarwal, Yuan Yang, and Mingwei Xu. A
Multi-Agent Reinforcement Learning Perspective on Distributed Traffic
Engineering. In Proc. IEEE ICNP, 2020.

[22] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning
to Forget: Continual Prediction with LSTM. Neural Computation,
12(10):2451–2471, October 2000.

[23] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei
Cai, et al. Recent Advances in Convolutional Neural Networks. Pattern
Recognition, 77:354–377, May 2018.

[24] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell,
and Joseph Kopena. Network Simulations with the ns-3 Simulator.
SIGCOMM Demonstration, 14(14):527, August 2008.

[25] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Rogger Wattenhofer. Achieving High Utiliza-
tion Using Software-Driven WAN. In Proc. ACM SIGCOMM, 2013.

[26] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou,
Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat.
B4: Experience with a Globally Deployed Software Defined WAN. In
Proc. ACM SIGCOMM, 2013.

[27] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bis-
sonnette, Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar
Reddy, John Abeln, Srikanth Kandula, Himanshu Raj, Luis Irun-Briz,
Jamie Gaudette, and Erica Lan. OneWAN is Better than Two: Unifying
a Split WAN Architecture. In Proc. USENIX NSDI, 2023.

[28] Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Kleinberg,
and Robert Soulé. YATES: Rapid Prototyping for Traffic Engineering
Systems. In Proc. ACM SOSR, 2018.

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
http://www.gurobi.com
https://info.support.huawei.com/info-finder/encyclopedia/en/IFIT.html
https://info.support.huawei.com/info-finder/encyclopedia/en/IFIT.html
http://www.topology-zoo.org/
https://networkx.org/
https://pytorch.org/
https://inmon.com/technology/sflowTools.php
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://discuss.pytorch.org/t/weight-decay-parameter/83023
https://discuss.pytorch.org/t/weight-decay-parameter/83023

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

[29] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. Semi-Oblivious
Traffic Engineering: The Road Not Taken. In Proc. USENIX NSDI,
2018.

[30] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Dif-
ferentiable Monte Carlo Ray Tracing Through Edge Sampling. ACM
Transactions on Graphics, 37(6):1–11, December 2018.

[31] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous Control with Deep Reinforcement Learning. arXiv preprint
arXiv:1509.02971, 2015.

[32] Zhifeng Liu, Zhiliang Wang, Xia Yin, Xingang Shi, Yingya Guo, and
Ying Tian. Traffic Matrix Prediction Based on Deep Learning for
Dynamic Traffic Engineering. In Proceedings of IEEE Symposium on
Computers and Communications, 2019.

[33] Tahira Mahboob, Young Rok Jung, and Min Young Chung. Optimized
Routing in Software Defined Networks–A Reinforcement Learning
Approach. In Proceedings of International Conference on Ubiquitous
Information Management and Communication, 2019.

[34] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive
Video Streaming with Pensieve. In Proc. ACM SIGCOMM, 2017.

[35] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf, and
Mohammad Alizadeh. Variance Reduction for Reinforcement Learning
in Input-Driven Environments. arXiv preprint arXiv:1807.02264, 2018.

[36] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. SNDlib 1.0: Survivable Network Design Library. Net-
works: An International Journal, 55(3):276–286, May 2010.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic Differentiation in PyTorch. In NIPS Autodiff
Workshop, 2017.

[38] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil, and Mo-
hammed Amine Janati Idrissi. Multilayer Perceptron: Architecture
Otimization and Training. International Journal of Interactive Multi-
media and Artificial Intelligence, 4(1):26–30, September 2016.

[39] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros,
and Albert Cabellos-Aparicio. RouteNet: Leveraging Graph Neural Net-
works for Network Modeling and Optimization in SDN. IEEE Journal
on Selected Areas in Communications, 38(10):2260–2270, October 2020.

[40] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the Game of Go
with Deep Neural Networks and Tree Search. Nature, 529(7587):484–
489, January 2016.

[41] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, Claire J.
Tomlin. Goal-Driven Dynamics Learning via Bayesian Optimization.
arXiv preprint arXiv:1703.09260, 2017.

[42] Giorgio Stampa, Marta Arias, David Sanchez-Charles, Victor Muntés-
Mulero, and Albert Cabellos. A Deep-reinforcement Learning Approach
for Software-Defined Networking Routing Optimization. arXiv preprint
arXiv:1709.07080, 2017.

[43] Penghao Sun, Zehua Guo, Junfei Li, Yang Xu, Julong Lan, and Yuxiang
Hu. Enabling Scalable Routing in Software-Defined Networks with
Deep Reinforcement Learning on Critical Nodes. IEEE/ACM Trans-
actions on Networking, 30(2):629–640, April 2021.

[44] Pravati Swain, Uttam Kamalia, Raj Bhandarkar, and Tejas Modi. Co-
DRL: Intelligent Packet Routing in SDN Using Convolutional Deep Re-
inforcement Learning. In Proceedings of IEEE International Conference
on Advanced Networks and Telecommunications Systems, 2019.

[45] András Varga and Rudolf Hornig. An Overview of the OMNeT++
Simulation Environment. In 1st International ICST Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems, 2010.

[46] Arun Verma. An Introduction to Automatic Differentiation. Current
Science, 378(7):804–807, April 2000.

[47] Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark
Rompf. Backpropagation with Callbacks: Foundations for Efficient
and Expressive Differentiable Programming. In Advances in Neural
Information Processing Systems, 2018.

[48] Zhiying Xu, Francis Y Yan, Rachee Singh, Justin T Chiu, Alexander M
Rush, and Minlan Yu. Teal: Learning-Accelerated Optimization of
Traffic Engineering. arXiv preprint arXiv:2210.13763, 2022.

[49] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,
Chi Harold Liu, and Dejun Yang. Experience-Driven Networking:
A Deep Reinforcement Learning Based Approach. In Proc. IEEE
INFOCOM, 2018.

[50] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong
Xu, Baochun Li, and Gong Zhang. DeepQueueNet: Towards Scalable
and Generalized Network Performance Estimation with Packet-Level
Visibility. In Proc. ACM SIGCOMM, 2022.

[51] Jianwei Zhang, Xinchang Zhang, Meng Sun, and Chunling Yang. Min-
imizing the Maximum Link Utilization in Multicast Multi-Commodity
Flow Networks. IEEE Communications Letters, 22(7):1478–1481, July
2018.

[52] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen Yan, João Sedoc,
and Vincent Liu. Mimicnet: Fast Performance Estimates for Data Center
Networks with Machine Learning. In Proc. ACM SIGCOMM, 2021.

Wenlong Ding is currently pursuing his Ph.D. de-
gree in Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong. He
received his B.E. degree with honors in Computer
Science and Technology from Huazhong University
of Science and Technology, China, in 2021. His
current research interests include machine learn-
ing for various network management tasks, with a
specific focus on network traffic and configuration
management tasks.

Libin Liu received his Ph.D. degree from the De-
partment of Computer Science, City University of
Hong Kong and his B.E. degree in software engi-
neering from Shandong University. He is currently
an Assistant Researcher with the Zhongguancun
Laboratory. His current research interests include
data analytics systems and machine learning for
networking. He received the best paper award of
ACM SIGCOMM 2022. He is a member of ACM
and IEEE.

Li Chen received the B.E. degree, M.Phil. degree
and Ph.D. degree from The Hong Kong University
of Science and Technology (HKUST) in 2011, 2013
and 2018, respectively. He previously worked as a
Systems Researcher in Huawei Theory Lab. His re-
search interests include Data Center Networks, Dis-
tributed Systems, Vert Computing, Machine Learn-
ing and OAM. He now works at Zhongguancun
Laboratory.

Hong Xu is an Associate Professor in Department
of Computer Science and Engineering, The Chi-
nese University of Hong Kong. His research area
is computer networking and systems, particularly
big data systems and data center networks. From
2013 to 2020 he was with City University of Hong
Kong. He received his B.Eng. from The Chinese
University of Hong Kong in 2007, and his M.A.Sc.
and Ph.D. from University of Toronto in 2009 and
2013, respectively. His work has received best paper
awards from ACM SIGCOMM 2022, IEEE ICNP

2023 and 2015, among others. He was the recipient of an Early Career Scheme
Grant from the Hong Kong Research Grants Council in 2014. He is a senior
member of IEEE and ACM.

	Introduction
	Background & Motivation
	TE in SDWAN
	DRL for TE
	dNE's Benefits

	Design
	System Overview
	Network Model
	Network Evaluation and Summarization

	DNN-based TE Use Cases
	Implementation
	Evaluation
	Experiment Setup
	Performance on TE Metrics
	TE Decision Acceleration
	Training Acceleration

	Scaling to extreme topologies
	Discussion
	Related Works for Large-Scale TE
	dNE for Running TE System

	Conclusion
	References
	Biographies
	Wenlong Ding
	Libin Liu
	Li Chen
	Hong Xu

