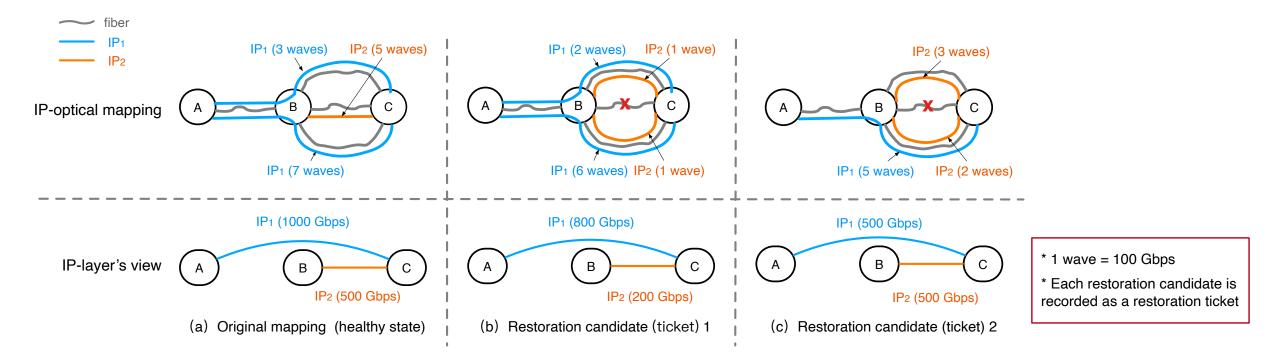
Dynamic Learning-based Link Restoration in Traffic Engineering with Archie


Wenlong Ding, Hong Xu

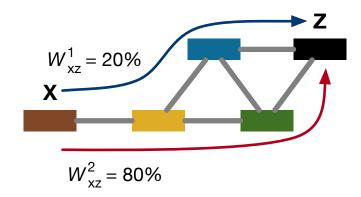
The Chinese University of Hong Kong, Hong Kong, China

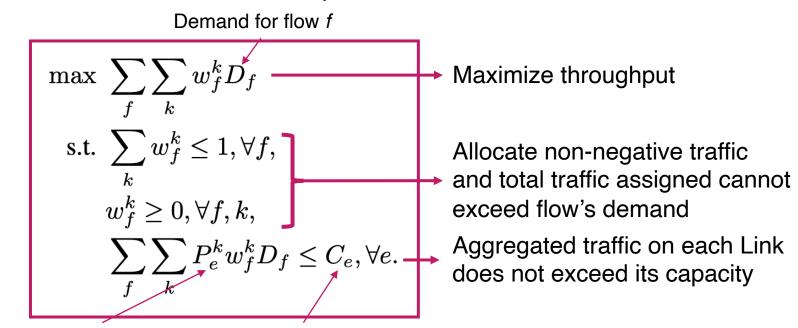
Optical Restoration in Wide-Area Networks (WANs)

- IP layer in WAN is constructed through IP-optical mapping
- When there is a fiber cut, there are many partial restoration candidates
- Traffic is routed on the IP layer in WAN

Best Restoration Ticket Selection Depends on Traffic Demand

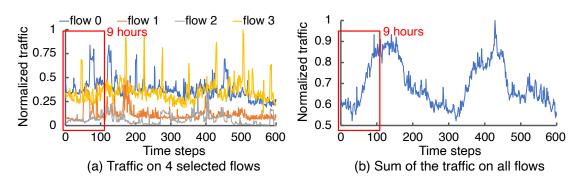
Which restoration candidate (ticket) leads to highest throughput?




Existing Work: Candidate Ticket Set + Traffic Engineering (TE)

- Within a fixed IP-layer view, a flow (src-dst pair) can be routed among different candidate paths.
- The possible maximum throughput can be formulated as TE optimization formulation.

 W_f^k : traffic fraction of flow f on path k



Arrow (Sigcomm'21) select the best ticket by *formulating TE* on *different restoration tickets* and select the best with highest throughput using **instantaneous traffic** when fiber is cut.

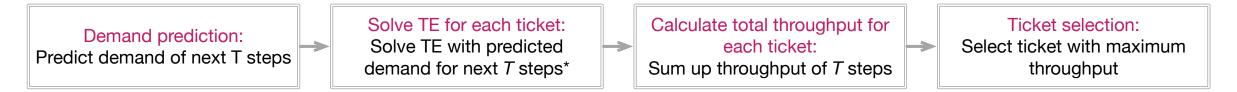
Whether link *e* on path *k* Capacity of link *e*

New Question: Ticket Selection for the Long Run

- Fiber cut always take long to repair (9 hours on average (Arrow Sigcomm'21))
- Challenge 1: Traffic dynamics in fiber repair time

- Challenge 2: Reconfiguration Overhead
- Reconfiguring wavelengths takes non-negligible time
 - At least O(10) seconds with the latest hardware on a simple 4-node topology (Arrow Sigcomm'21)

Static Restoration: Calculate one ticket with traffic at fiber cut and use it for the whole repair time.

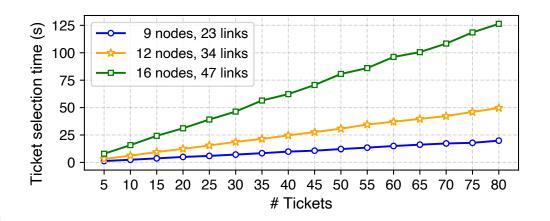

Constant Restoration: Change ticket every TE time step to cope with dynamic traffic.

Extreme ticket selection methods may lead to throughput loss

Balance traffic dynamic and reconfiguration overhead: select restoration tickets every T time steps. (T is a short period (e.g. T=10) compared with whole repair time)

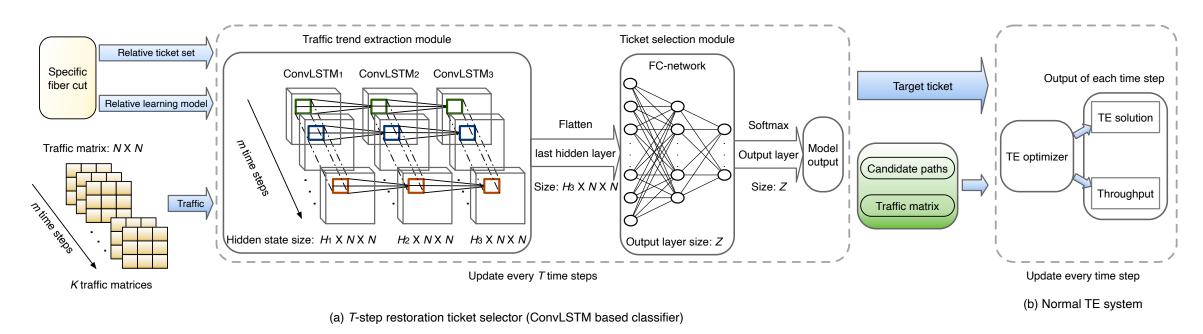
Strawman Solution for T-Step Ticket Selection

Strawman solution: Demand Prediction


Backwards of Demand Prediction:

1. Time consuming

 Requires to solve TE for TZ times (Z is the number of candidate tickets) to select one ticket.


2. Prediction inaccuracy

 Traffic prediction will be inaccurate for the long horizon even with state-of-the-art learning methods.

^{*} Current TE always predict traffic 1-step ahead (Smore NSDI'18), we extend it to prediction of T steps.

Our Design: Archie, An End-to-End Learning-Based Method

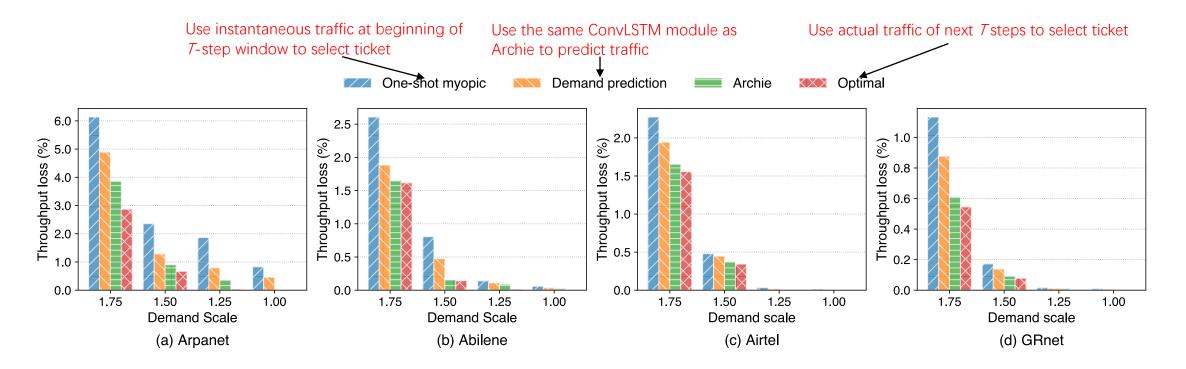
- Models are trained offline and only conduct inference online.
- Label generation of *supervised learning*: Using the actual traffic demand of next *T* steps.

Intuitive advantages of Archie:

- 1. Faster decision time: one pass of the model inference instead of solving TE optimizations TZ times.
- 2. Robust to inherent prediction inaccuracy: end-to-end learning copes with traffic uncertainties as long as the selected ticket is correct, instead of requiring accurate demand prediction for all *T* steps.
 - We will show insights why Archie outperforms Demand Prediction with analysis evaluation afterwards.

Evaluation Setups

Evaluated topologies and traffic traces

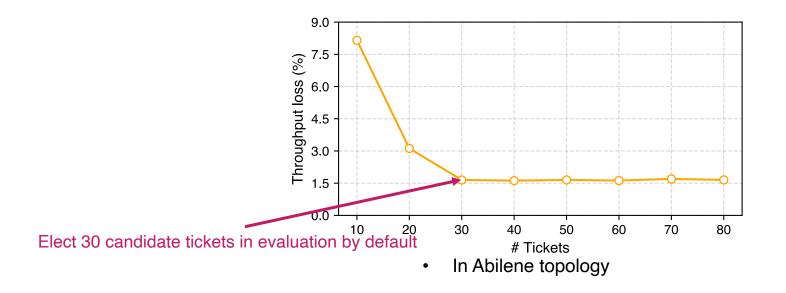

Topology	# Nodes	# Fibers	# IP links	# Traffic matrices (Train + Test)
Arpanet	9	10	23	
Abilene	12	15	34	2880+120
Airtel	16	26	47	2000+120
GRnet	37	42	101	

Evaluation setups

- Ticket setup: Z=30 by default for each fiber cut scenario
- TE setup: K=4 shortest path for each flow, one time step is 5 minute
- Fiber cut scenario: Random one fiber cut

Performance of Archie: Throughput Loss

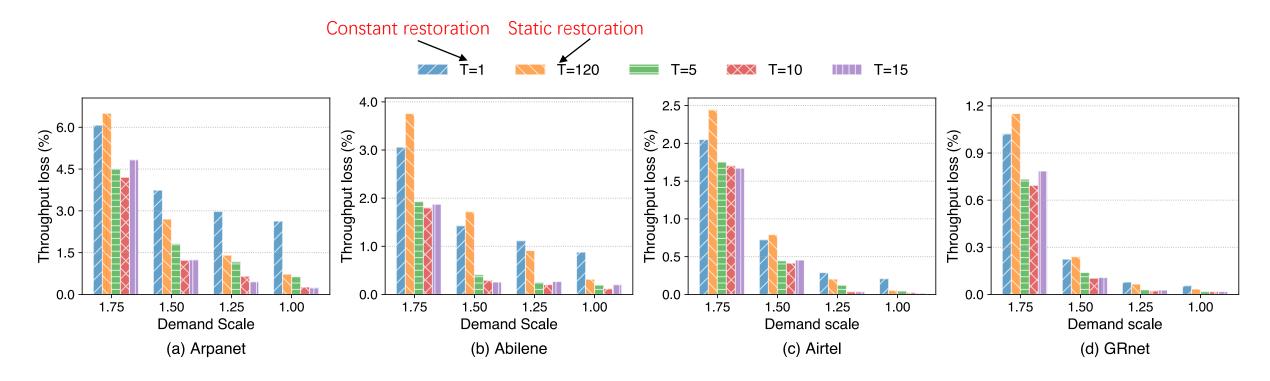
Settings: T is fixed to be 10, reconfiguration overhead is not considered currently.


- Near-to-optimal performance: additional throughput loss only range from 0% to 0.98% at most.
- Reduce 48.5% and 27.1% throughput loss compared to One-shot myopic and Demand prediction, respectively.
- Performance are robust to all demand scales and topology scales.

Performance of Archie: Ticket Selection Time

Topology	T	Ticket selection time (seconds)				
		One-shot myopic	Demand prediction	Archie		
	5	0.729	3.644	0.01875		
Arpanet	10	0.721	7.102	0.01900		
	15	0.732	10.982	0.01894		
	5	1.845	9.221	0.02544		
Abilene	10	1.852	18.001	0.02501		
	15	1.847	27.705	0.02539		
	5	4.746	23.712	0.03011		
Airtel	10	4.745	48.003	0.02996		
	15	4.751	71.265	0.03008		
	5	51.974	259.182	0.04355		
GRnet	10	52.123	522.313	0.04441		
	15	51.988	779.320	0.04483		

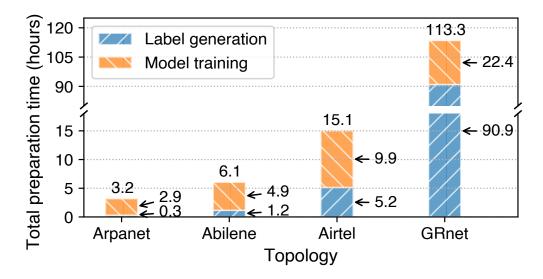
- Neat-to-zero selection time: within 45ms in all our test cases.
- Speedups are 362x and 3598x compared to One-shot myopic and Demand prediction on average.
- Good scalability: Growth speed of decision time in Archie is slow when the topology scales.


Performance of Archie: Candidate Ticket Number

- When tickets are not enough (≤ 30), ticket set may not cover a good ticket, adding tickets may improve performance.
- When exceeding 30 tickets, performance stop improving obviously. More tickets increase burden of model preparation.

Benefit of T-Step Dynamic Restoration

Settings: Reconfiguration time is set to be 1/30 steps (10s).



- Archie under best T reduce throughput loss by 64.7% and 59.6% compared to constant and static restoration.
- Archie with there moderate settings of T (5, 10, 15) has small performance difference less than 0.2%.

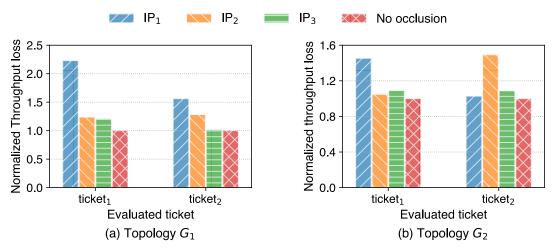
Offline Model Preparation Time of Archie

Settings:

- T = 10, Z = 30, concurrent threads P = 192 for generating O(1000) labels. Needs $O\left(\frac{1000TZ}{P}\right)$ times TE solving.
- One GPU for model training for all one fiber cut scenarios.

- Offline time investment is acceptable for real-world use:
 - Common medium topology (Abilene) can finish preparation within 6 hours.
 - Large topology (GRnet) can finish within 5 days.
- Time can be further reduced by leveraging more GPUs and concurrent threads to enhance parallelism.

Insight from Archie: Spatial Feature Analysis

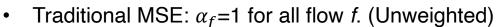

Spatial Feature: Does Archie pay more attention to specific flows?

- Method: Occlusion analysis (Occludes evaluated traffic input part and evaluate the performance gap)
 - Clear demand to 0 for occluded flows.
 - Evaluate traffic epochs whose ground truth is the following tickets.
 - Occlude all flows traversing some links in the topology (IP1, IP2, IP3), respectively.

Topology	Information item	ticket ₁			ticket ₂		
Topology	Information item	${ m IP}_1$	IP_2	IP_3	${ m IP}_1$	IP_2	IP_3
G_1	# Wavelengths	4	1	1	3	2	1
G_2	# Wavelengths	8	2	2	2	8	2

- Ticket Selection: occluded past traffic
- Throughput Calculation: original future traffic

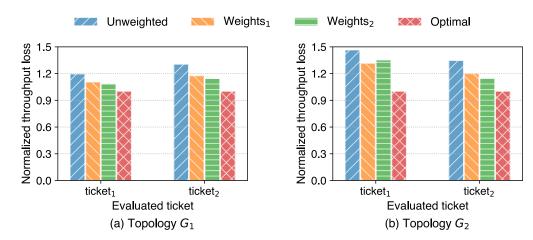
Performance Result of Occlusion


- For ticket 1 in G1, Traffic flows traversing IP1 are the more important than others (in future traffic).
- Archie assign more restored wavelengths to the corresponding links of the flows.
- Archie can identify parts of critical future flows, thus assign more restored wavelengths to corresponding links.

Insight from Archie: Spatial Feature Analysis

Spatial Feature: Does Archie's ability to identify critical flows makes it superior to Demand Prediction?

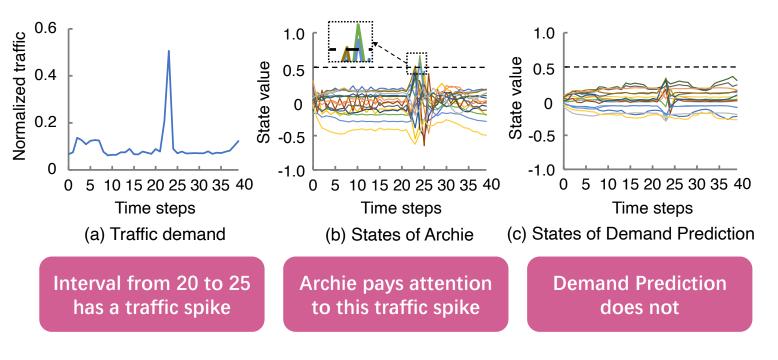
- Introduce the same flow importance in Archie to Demand Prediction.
 - Modify the MSE loss when training:


$$J = \frac{1}{T \times F} \sum_{t}^{T} \sum_{f}^{F} \alpha_f (y_{ft} - h_{ft})^2$$

Performance Result

 Weight assignment exampl
--

-	Topology	Information item	ticket1			ticket ₂		
w		information item	IP ₁	IP_2	IP ₃	IP ₁	IP_2	IP ₃
		# Wavelengths	4	1	1	3	2	1
	G_1	Weights (α_f)	2.0	1.0	1.0	2.0	1.5	1.0
		Weights ₂ (α_f)	3.0	1.0	1.0	3.0	2.0	1.0
		# Wavelengths	8	2	2	2	8	2
	G_2	Weights (α_f)	2.0	1.0	1.0	1.0	2.0	1.0
		Weights ₂ (α_f)	3.0	1.0	1.0	1.0	3.0	1.0

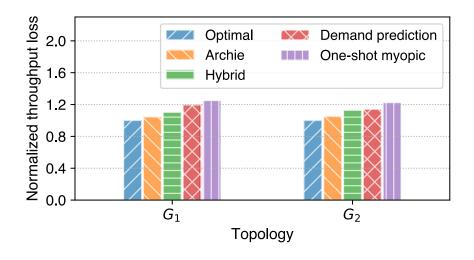


- Archie's ability to identify critical future flows is one of the reasons why it outperforms Demand prediction.
 - Performance: Optimal > Weight 1, Weight 2 > Unweighted

Insight from Archie: Temporal Feature Analysis

Temporal Feature: Does Archie identify to any special traffic patterns?

Method: LSTMVis (check important time interval)


- Input past traffic length: 40
- Hidden states dimension of ConvLSTM: 16

Archie can identify traffic spikes!

Insight from Archie: Temporal Feature Analysis

Temporal Feature: Does this traffic spike feature help ticket selection?

- Evaluate the performance without spike identification feature for Archie
 - Use ConvLSTM module parameters in Demand Prediction for Archie and freeze these parameters.
 - Retrain FC network in Archie to obtain a new model, it is called Hybrid.

- Traffic spike feature in Archie does help ticket selection
 - Archie outperforms Hybrid: Identify traffic spikes
 - Hybrid outperforms Demand Prediction: Archie has other advantages for ticket selection (Identify vital flows).

Thank you! Q&A