

					\sim
ip ospf cost <cost_value> <</cost_value>	Ð	Deployable	!		
uter ospf <#ospf>		Scripts	router ospf 1		
network <ip> <wildcard-mask> area <#area></wildcard-mask></ip>	3	-	network 192.168.2.0 0.0.0.0.255 area 0 <	 	-3
					_

i/j: OSPF weight of the left-right (i) /right-left (j) direction link

1. *Intent Understanding*: Interpret NL inputs to identify necessary network specifics and policies for configurations (e.g. source prefix or ACL action).

2. *Intent Implementation*: Solve parameter settings in network topology with proper protocols (e.g. OSPF link weights or ACL configuration ports).

3. Scripts Generation: Generate deployable configuration scripts by filling identified network specifics and protocol settings in templates.

Despite the widespread exploration of template-filling-based methods for Script Generation, unresolved challenges remain in the other two tasks.

Intent Understanding [Overview] Use LLMs with Prompt Engineering to identify all necessary configuration specifics.

Why LLM

Related works

Named-Entity Recognition (*NER*) with traditional language models (e.g. BERT), such as identifying "Library" as source endpoint.

Limitations: Low generality

Related works requires training different models for different network corpora and specific retraining for entity synonyms (e.g. "Lib", "Library" and "10.0.1.0/24").

Challenges with LLM

Handle implicit network information

Certain network-specific information needed for configuration (e.g. prefixes) may not be explicitly stated in NL and varies between networks.

Specify key identification elements

LLMs should understand which elements are necessary to identify for the current configuration, such as "source prefixes" and "policy" to allow or deny flows for ACL intents configuration.

Design: Prompt Engineering

Implicit information database

We map NL names to corresponding networkspecific information and supply it to LLMs, using prompts like "*Library*" -> "10.0.1.0/24".

Key identification elements description

We provide key identification elements with explanations to LLMs. Our prompts for reachability intent can be: "*Policy: <permit/deny intent flow>*".

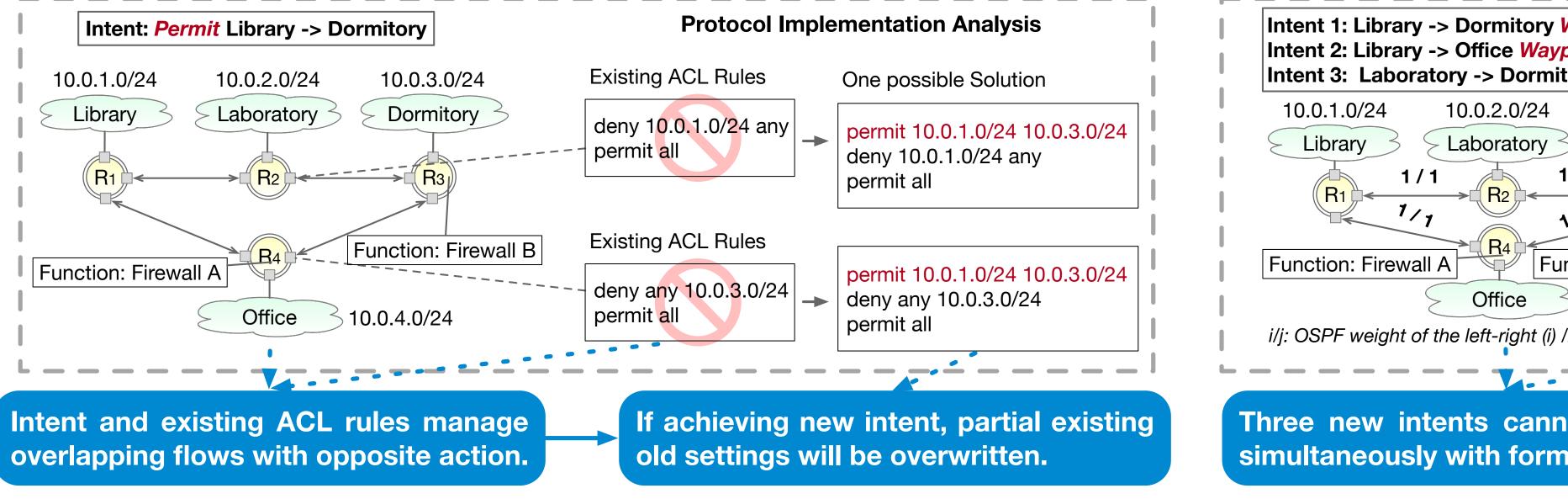
LLM: Suitable to solve expression variations LLMs are pre-trained models with strong text processing abilities for various corpora, capable of solving numerous text-based tasks via prompting instead of repeated training.

Understanding process guidance

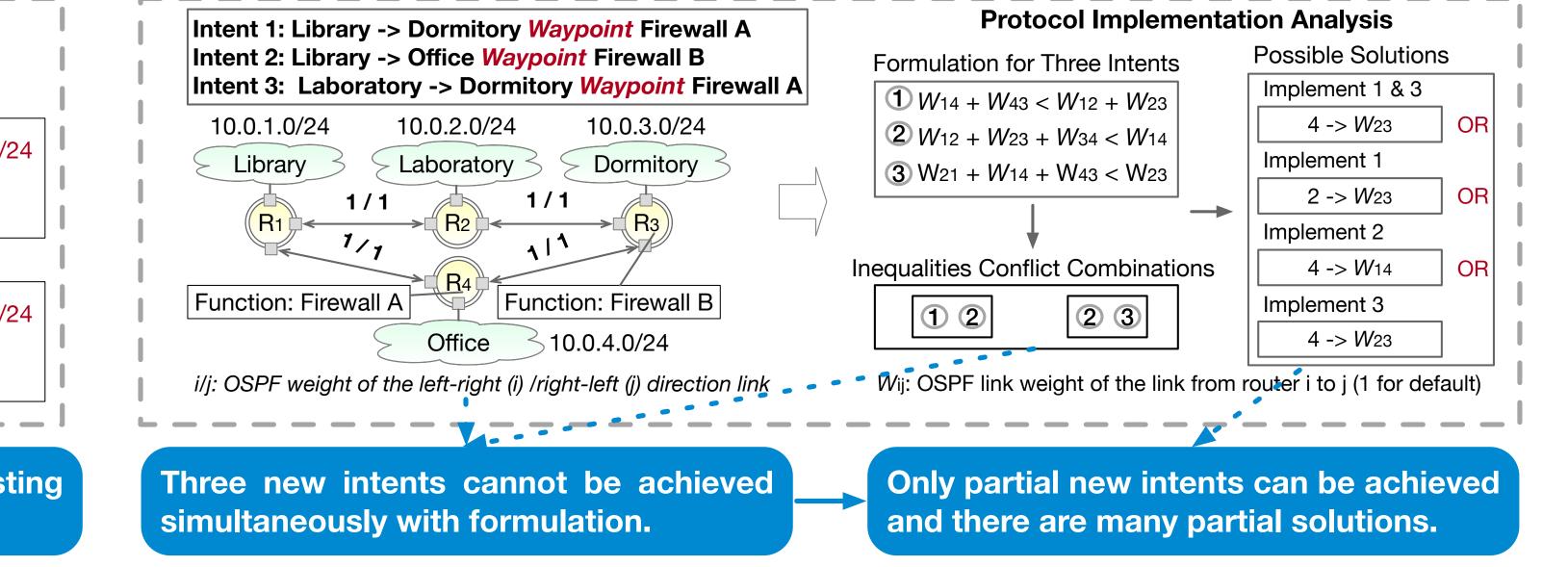
We describe the details about how to extract key identification elements using NL and implicit information databases.

Intent Implementation [Overview] Use *priority-based framework* to reconcile *configuration conflicts* in Intent Implementation.

Conflict (a): New Intent and Existing Configuration

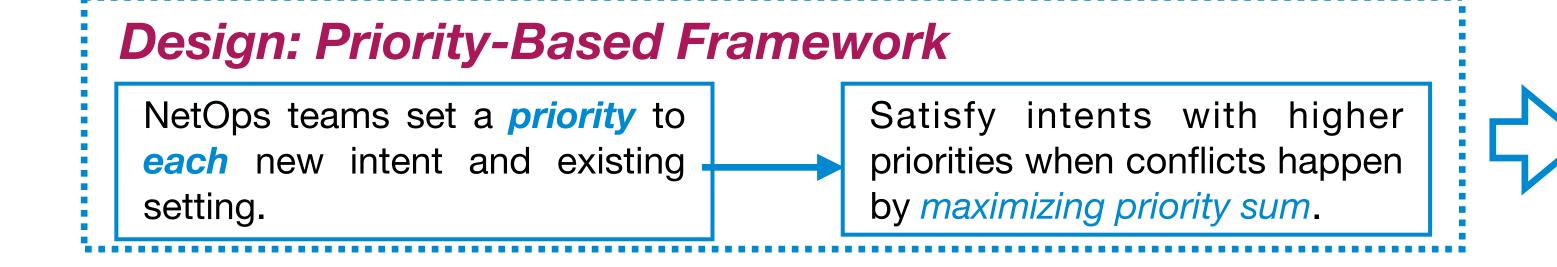


Conflicts (b): Between New Intents



Since some configurations cannot be achieved simultaneously, NetOps teams should reconcile these conflicts.

.....



Two Examples (In Conflict (b) Situation)

Priority of three intents: 1, 4, and 1. We satisfy intent 2 with priority sum equal to 4. *Priority of three intents: 1, 1, and 1.* We satisfy intent 1 and 3 with priority sum equal to 2.

Preliminary Results [Overview] Our Intent Understanding achieves high accuracy with fast inference time in mere seconds.

Results

Dataset	Dataset Information		Evaluation Results				
Dataset	# Intents	# Chars Per Intent	Metric	Llama 2	Mistral	GPT-3.5	GPT-4
Hand-crafted 150	150	81.3	Accuracy	91.3%	86.7%	98.7%	100%
	150		Time (s)	2.25	2.59	1.38	3.98
AI-generated 300	81.9	Accuracy	88.0%	88.7%	98.3%	100%	
	500	01.9	Time (s)	2.89	2.33	1.34	4.13

Conclusion

1. Advanced models (GPTs) achieve over 95% accuracy, with GPT-4 even reaching 100%.

- 2. Inference time range from a few seconds for all models.
- 3. Two datasets yield similar accuracy and inference time results.